Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 10(9)2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217057

RESUMO

The use of -omics technologies allows for the characterization of snake venom composition at a fast rate and at high levels of detail. In the present study, we investigated the protein content of Red-headed Krait (Bungarus flaviceps) venom. This analysis revealed a high diversity of snake venom protein families, as evidenced by high-throughput mass spectrometric analysis. We found all six venom protein families previously reported in a transcriptome study of the venom gland of B. flaviceps, including phospholipases A2 (PLA2s), Kunitz-type serine proteinase inhibitors (KSPIs), three-finger toxins (3FTxs), cysteine-rich secretory proteins (CRISPs), snaclecs, and natriuretic peptides. A combined approach of automated database searches and de novo sequencing of tandem mass spectra, followed by sequence similarity searches, revealed the presence of 12 additional toxin families. De novo sequencing alone was able to identify 58 additional peptides, and this approach contributed significantly to the comprehensive description of the venom. Abundant protein families comprise 3FTxs (22.3%), KSPIs (19%), acetylcholinesterases (12.6%), PLA2s (11.9%), venom endothelial growth factors (VEGFs, 8.4%), nucleotidases (4.3%), and C-type lectin-like proteins (snaclecs, 3.3%); an additional 11 toxin families are present at significantly lower concentrations, including complement depleting factors, a family not previously detected in Bungarus venoms. The utility of a multifaceted approach toward unraveling the proteome of snake venoms, employed here, allowed detection of even minor venom components. This more in-depth knowledge of the composition of B. flaviceps venom facilitates a better understanding of snake venom molecular evolution, in turn contributing to more effective treatment of krait bites.


Assuntos
Bungarus , Venenos Elapídicos/química , Proteínas de Répteis/análise , Animais , Feminino , Masculino , Proteoma/análise , Proteômica , Espectrometria de Massas em Tandem
2.
Toxicon ; 148: 213-222, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29730150

RESUMO

Venoms from snakes are rich sources of highly active proteins with potent affinity towards a variety of enzymes and receptors. Of the many distinct toxicities caused by envenomation, neurotoxicity plays an important role in the paralysis of prey by snakes as well as by venomous sea snails and insects. In order to improve the analytical discovery component of venom toxicity profiling, this paper describes the implementation of microfluidic high-resolution screening (HRS) to obtain neurotoxicity fingerprints from venoms that facilitates identification of the neurotoxic components of envenomation. To demonstrate this workflow, 47 snake venoms were profiled using the acetylcholine binding protein (AChBP) to mimic the target of neurotoxic proteins, in particular nicotinic acetylcholine receptors (nAChRs). In the microfluidic HRS system, nanoliquid chromatographic (nanoLC) separations were on-line connected to both AChBP profiling and parallel mass spectrometry (MS). For virtually all neurotoxic elapid snake venoms tested, we obtained bioactivity fingerprints showing major and minor bioactive zones containing masses consistent with three-finger toxins (3FTxs), whereas, viperid and colubrid venoms showed little or no detectable bioactivity. Our findings demonstrate that venom interactions with AChBP correlate with the severity of neurotoxicity observed following human envenoming by different snake species. We further, as proof of principle, characterized bioactive venom peptides from a viperid (Daboia russelli) and an elapid (Aspidelaps scutatus scutatus) snake by nanoLC-MS/MS, revealing that different toxin classes interact with the AChBP, and that this binding correlates with the inhibition of α7-nAChR in calcium-flux cell-based assays. The on-line post-column binding assay and subsequent toxin characterization methodologies described here provide a new in vitro analytic platform for rapidly investigating neurotoxic snake venom proteins.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Neurotoxinas/toxicidade , Peptídeos/isolamento & purificação , Venenos de Serpentes/toxicidade , Proteínas de Transporte , Cromatografia Líquida , Humanos , Antagonistas Nicotínicos , Peptídeos/química , Venenos de Serpentes/química , Espectrometria de Massas em Tandem
3.
TH Open ; 2(3): e303-e314, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31249954

RESUMO

Three-finger toxins (3FTxs) contribute to toxicity of venomous snakes belonging to the family Elapidae. Currently, functions of a considerable proportion of 3FTxs are still unknown. Here, we describe the function of orphan group I 3FTxs consisting of four members. We also identified a new member of this group by sequencing a transcript isolated from Naja naja venom. This transcript, named najalexin, is identical to that previously described 3FTx from Naja atra venom gland, and shared high sequence identity with ringhalexin from Hemachatus haemachatus and a hypothetical protein from Ophiophagus hannah (here named as ophiolexin). The three-dimensional structure, as predicted by molecular modeling, showed that najalexin and ophiolexin share the same conserved structural organization as ringhalexin and other 3FTxs. Since ringhalexin inhibits the activation of factor X by the tissue factor-factor VIIa complex (TF-FVIIa), we evaluated the interaction of this group of 3FTxs with all components using in silico protein-protein docking studies. The binding of orphan group I 3FTxs to TF-FVIIa complex appears to be driven by their interaction with TF. They bind to fibronectin domain closer to the 170-loop of the FVIIa heavy chain to inhibit factor X activation. The docking studies reveal that functional site residues Tyr7, Lys9, Glu12, Lys26, Arg34, Leu35, Arg40, Val55, Asp56, Cys57, Cys58, and Arg65 on these 3FTxs are crucial for interaction. In silico replacement of these residues by Ala resulted in significant effects in the binding energies. Furthermore, these functional residues are not found in other groups of 3FTxs, which exhibit distinct pharmacological properties.

4.
Toxicon ; 135: 33-42, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28602829

RESUMO

Snake venoms are mixtures of biologically-active proteins and peptides, and several studies have described the characteristics of some of these toxins. However, complete proteomic profiling of the venoms of many snake species has not yet been done. The Indian cobra (Naja naja) and common krait (Bungarus caeruleus) are elapid snake species that are among the 'Big Four' responsible for the majority of human snake envenomation cases in India. As understanding the composition and complexity of venoms is necessary for successful treatment of envenomation in humans, we utilized three different proteomic profiling approaches to characterize these venoms: i) one-dimensional SDS-PAGE coupled with in-gel tryptic digestion and electrospray tandem mass spectrometry (ESI-LC-MS/MS) of individual protein bands; ii) in-solution tryptic digestion of crude venoms coupled with ESI-LC-MS/MS; and iii) separation by gel-filtration chromatography coupled with tryptic digestion and ESI-LC-MS/MS of separated fractions. From the generated data, 81 and 46 different proteins were identified from N. naja and B. caeruleus venoms, respectively, belonging to fifteen different protein families. Venoms from both species were found to contain a variety of phospholipases A2 and three-finger toxins, whereas relatively higher numbers of snake venom metalloproteinases were found in N. naja compared to B. caeruleus venom. The analyses also identified less represented venom proteins including L-amino acid oxidases, cysteine-rich secretory proteins, 5'-nucleotidases and venom nerve growth factors. Further, Kunitz-type serine protease inhibitors, cobra venom factors, phosphodiesterases, vespryns and aminopeptidases were identified in the N. naja venom, while acetylcholinesterases and hyaluronidases were found in the B. caeruleus venom. We further analyzed protein coverage (Lys/Arg rich and poor regions as well as potential glycosylation sites) using in-house software. These studies expand our understanding of the proteomes of the venoms of these two medically-important species.


Assuntos
Bungarus , Venenos Elapídicos/química , Naja naja , Proteoma/análise , Animais , Especificidade da Espécie
5.
J Proteomics ; 144: 51-62, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27240975

RESUMO

UNLABELLED: Snake venom is a highly variable phenotypic character, and its variation and rapid evolution are important because of human health implications. Because much snake antivenom is produced from captive animals, understanding the effects of captivity on venom composition is important. Here, we have evaluated toxin profiles from six long-term (LT) captive and six recently wild-caught (RC) eastern brown snakes, Pseudonaja textilis, utilizing gel electrophoresis, HPLC-MS, and shotgun proteomics. We identified proteins belonging to the three-finger toxins, group C prothrombin activators, Kunitz-type serine protease inhibitors, and phospholipases A2, among others. Although crude venom HPLC analysis showed LT snakes to be higher in some small molecular weight toxins, presence/absence patterns showed no correlation with time in captivity. Shotgun proteomics indicated the presence of similar toxin families among individuals but with variation in protein species. Although no venom sample contained all the phospholipase A2 subunits that form the textilotoxin, all did contain both prothrombin activator subunits. This study indicates that captivity has limited effects on venom composition, that venom variation is high, and that venom composition may be correlated to geographic distribution. BIOLOGICAL SIGNIFICANCE: Through proteomic comparisons, we show that protein variation within LT and RC groups of snakes (Pseudonaja textilis) is high, thereby resulting in no discernible differences in venom composition between groups. We utilize complementary techniques to characterize the venom proteomes of 12 individual snakes from our study area, and indicate that individuals captured close to one another have more similar venom gel electrophoresis patterns than those captured at more distant locations. These data are important for understanding natural variation in and potential effects of captivity on venom composition.


Assuntos
Venenos Elapídicos/química , Elapidae , Proteômica/métodos , Estresse Fisiológico , Grupos de População Animal , Animais , Fosfolipases A2/análise , Proteômica/instrumentação , Protrombina/agonistas , Inibidores de Serino Proteinase/análise
6.
Toxicon ; 93: 1-10, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25448392

RESUMO

Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution.


Assuntos
Evolução Molecular , Perfilação da Expressão Gênica/métodos , Proteínas/genética , Proteínas/metabolismo , Venenos de Serpentes/química , Serpentes/genética , Animais , Proteínas/análise , Venenos de Serpentes/classificação , Especificidade da Espécie
7.
Ecotoxicology ; 23(1): 33-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24197420

RESUMO

Due to their longevity, strong site tenure, poikilothermic metabolism, and low-energy specializations, reptiles might serve as excellent environmental sentinels. Cottonmouth snakes are generalist predators and scavengers, and as such, may have higher exposure to persistent environmental contaminants as a result of bioaccumulation. Traditionally, assessment and monitoring of contaminant exposure in reptiles have involved lethal sampling techniques. In this paper, we describe a non-destructive technique for sampling liver tissue in live anesthetized Florida cottonmouths. Wild-caught snakes (n = 21) were anesthetized with propofol, and a liver wedge biopsy was obtained by clamping the edge of the organ with two small hemostatic mosquito forceps via right-sided coeliotomy incision. A minimum required tissue sample weighing >100 mg was harvested from all except one of the animals. No mortalities occurred during the procedures or recovery from anesthesia, and all snakes were released back into the field after the animal had consumed prey and defecated, usually within 2 weeks following surgery. Hemorrhage was a minor complication in most snakes, especially those with friable discolored livers. The procedure appeared to have no short-term deleterious effects, and two biopsied individuals were captured after being released into the field and appeared to be normal and healthy. However, follow-up studies and recapture of more snakes are needed to assess long-term survivability. Our non-destructive liver sampling technique might be implemented in toxicological studies of other squamates and could help to minimize the lethal sampling of threatened species.


Assuntos
Agkistrodon/cirurgia , Biópsia/veterinária , Ecotoxicologia/métodos , Fígado/cirurgia , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/farmacologia , Animais , Biópsia/métodos , Feminino , Florida , Fígado/patologia , Masculino , Propofol/administração & dosagem , Propofol/farmacologia
8.
Proc Natl Acad Sci U S A ; 110(51): 20651-6, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297900

RESUMO

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Assuntos
Adaptação Biológica/fisiologia , Venenos Elapídicos , Elapidae , Evolução Molecular , Genoma/fisiologia , Transcriptoma/fisiologia , Animais , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Elapidae/genética , Elapidae/metabolismo , Glândulas Exócrinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
9.
Thromb Res ; 132(6): 642-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24125598

RESUMO

Snake venom toxins have evolved to affect many prey physiological systems including hemostasis and thrombosis. These toxins belong to a diverse array of protein families and can initiate or inhibit multiple stages of the coagulation pathway or platelet aggregation with incredible specificity. Such specificity toward vertebrate molecular targets has made them extremely useful for diagnosis of human diseases or as molecular scalpels in physiological studies. The large number of yet-to-be characterized venoms provides a vast potential source of novel toxins and subsequent cardiovascular therapeutics and diagnostic agents.


Assuntos
Venenos de Serpentes/farmacologia , Trombose/induzido quimicamente , Animais , Coagulação Sanguínea/efeitos dos fármacos , Hemostasia/efeitos dos fármacos , Humanos , Trombose/sangue
10.
Toxicon ; 62: 56-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23058997

RESUMO

Non-enzymatic proteins from snake venoms play important roles in the immobilization of prey, and include some large and well-recognized families of toxins. The study of such proteins has expanded not only our understanding of venom toxicity, but also the knowledge of normal and disease states in human physiology. In many cases their characterization has led to the development of powerful research tools, diagnostic techniques, and pharmaceutical drugs. They have further yielded basic understanding of protein structure-function relationships. Therefore a number of studies on these non-enzymatic proteins had major impact on several life science and medical fields. They have led to life-saving therapeutics, the Nobel prize, and development of molecular scalpels for elucidation of ion channel function, vasoconstriction, complement system activity, platelet aggregation, blood coagulation, signal transduction, and blood pressure regulation. Here, we identify research papers that have had significant impact on the life sciences. We discuss how these findings have changed the course of science, and have also included the personal recollections of the original authors of these studies. We expect that this review will provide impetus for even further exciting research on novel toxins yet to be discovered.


Assuntos
Venenos de Serpentes/química , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Anticoagulantes/farmacologia , Cardiotoxinas/química , Cardiotoxinas/isolamento & purificação , Cardiotoxinas/farmacologia , Via Alternativa do Complemento/fisiologia , Venenos de Crotalídeos/química , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacologia , Desenho de Fármacos , Venenos Elapídicos/isolamento & purificação , Venenos Elapídicos/farmacologia , Endotelinas/química , Lectinas Tipo C/química , Lectinas Tipo C/isolamento & purificação , Peptídeos Natriuréticos/química , Peptídeos Natriuréticos/isolamento & purificação , Peptídeos Natriuréticos/farmacologia , Fator de Crescimento Neural/química , Junção Neuromuscular/efeitos dos fármacos , Oligopeptídeos/química , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/farmacologia , Venenos de Serpentes/farmacologia , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/isolamento & purificação , Fator A de Crescimento do Endotélio Vascular/farmacologia
11.
Toxicon ; 55(2-3): 250-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19647760

RESUMO

Florida cottonmouth snakes (Agkistrodon piscivorus conanti) were anesthetized with the injectable anesthetic propofol, and venom expulsion was induced with a commercially available human nerve stimulator. We observed rapid anesthetic induction with strong correlation between animal mass and both propofol dose and induction time. We also found a positive correlation between venom yield and animal mass. The method we describe produced consistent venom extraction, maximized yield by completely emptying the glands, potentially reduced animal stress by reducing time of conscious physical restraint, and decreased the likelihood of human envenomation. This technique could also be used in remote field locations.


Assuntos
Agkistrodon/fisiologia , Venenos de Crotalídeos/isolamento & purificação , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Anestesia , Anestésicos Inalatórios , Anestésicos Intravenosos , Animais , Peso Corporal/fisiologia , Relação Dose-Resposta a Droga , Feminino , Isoflurano , Masculino , Propofol , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...